Moving Average Number Of Periods


Calculadora de média móvel Dada uma lista de dados seqüenciais, você pode construir a média móvel n-ponto (ou média móvel) encontrando a média de cada conjunto de n pontos consecutivos. Por exemplo, se você tem o conjunto de dados ordenados 10, 11, 11, 15, 13, 14, 12, 10, 11, a média móvel de 4 pontos é 11,75, 12,5, 13,25, 13,5, 12,25, 11,75. Para suavizar os dados seqüenciais eles fazem picos acentuados e mergulhos menos pronunciados porque cada ponto de dados brutos é dado apenas um peso fracionário na média móvel. Quanto maior o valor de n. O mais suave o gráfico da média móvel em comparação com o gráfico dos dados originais. Analistas de ações muitas vezes olham para mover médias de dados de preços de ações para prever as tendências e ver padrões mais claramente. Você pode usar a calculadora abaixo para encontrar uma média móvel de um conjunto de dados. Número de Termos em uma Média Móvel Simples n - Point Se o número de termos no conjunto original for d eo número de termos usados ​​em cada média for n. Por exemplo, se você tiver uma seqüência de 90 preços das ações e tomar a média de 14 dias de rolamento dos preços, a seqüência média móvel terá 90 - 14 1 77 pontos. Esta calculadora calcula médias móveis onde todos os termos são ponderados igualmente. Você também pode criar médias móveis ponderadas em que alguns termos recebem maior peso do que outros. Por exemplo, dar mais peso aos dados mais recentes, ou criar uma média ponderada centralmente onde os termos médios são contados mais. Consulte o artigo e a calculadora das médias móveis ponderadas para obter mais informações. Junto com as médias aritméticas em movimento, alguns analistas também olham para a mediana móvel de dados ordenados, uma vez que a mediana não é afetada por estranhos outliers. Moving Média Fita DEFINIÇÃO da Faixa Média Médio Uma técnica utilizada na análise técnica para identificar as tendências em mudança. Ele é criado colocando um grande número de médias móveis no mesmo gráfico. Quando todas as médias estão se movendo na mesma direção, a tendência é dito ser forte. As reversões são confirmadas quando as médias crossover e cabeça na direção oposta. As médias móveis utilizadas no diagrama começam com a média móvel de 50 dias e aumentam em períodos de 10 dias até a média final de 200. (50, 60, 70, 80, 190, 200) BREAKING DOWN Moving Average Ribbon Responda a A alteração das condições é contabilizada pela alteração do número de períodos de tempo utilizados nas médias móveis. Quanto mais curto o número de períodos utilizados para criar a média, mais sensível a fita é a ligeira mudança de preços. Por exemplo, uma série de médias móveis de 5, 15, 25, 35 e 45 dias será uma melhor escolha para encontrar inversões de curto prazo, em seguida, 150, 160, 170, 180 dias médias móveis. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução que vale a pena para algumas das questões de computação relacionadas com a implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nos seus resultados de teste em um curso onde você vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para a sua próxima pontuação de teste Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis ​​esperar que você comece algo na área dos 85 você apenas começ. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados ​​e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para eles desenvolver uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre sua inteligência. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você conseguiu um 85 e um 73, então talvez você deva imaginar sobre como obter um (85 73) 2 79. Eu não sei, talvez se você fez menos festas E werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. Ambos estas estimativas são, na verdade, a média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. O segundo é também uma previsão média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todos a fazer suas previsões sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados pela seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isso é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsões, porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são usados ​​para cada previsão. Mais uma vez eu incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados ​​para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel do período m, ao fazer previsões quotpast, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis ​​Dim Item Como Variante Dim Counter Como Inteiro Dim Acumulação como Único Dim HistoricalSize As Inteiro Inicializando variáveis ​​Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação NumberOfPeriods O código será explicado na classe. Você deseja posicionar a função na planilha para que o resultado da computação seja exibido onde ele deve gostar do seguinte.

Comments